The First Two Decades of Smart-City Research: A Bibliometric Analysis

Article in Journal of Urban Technology · March 2017
DOI: 10.1080/10630732.2017.1285123

CITATIONS
72

READS
1,531

3 authors, including:

Luca Mora
Edinburgh Napier University
42 PUBLICATIONS 263 CITATIONS
SEE PROFILE

Mark Deakin
Edinburgh Napier University
118 PUBLICATIONS 1,588 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Increasing offsite housing construction in Scotland View project

Online S3 View project
The First Two Decades of Smart-City Research: A Bibliometric Analysis

Luca Mora, Roberto Bolici & Mark Deakin

To cite this article: Luca Mora, Roberto Bolici & Mark Deakin (2017) The First Two Decades of Smart-City Research: A Bibliometric Analysis, Journal of Urban Technology, 24:1, 3-27, DOI: 10.1080/10630732.2017.1285123

To link to this article: http://dx.doi.org/10.1080/10630732.2017.1285123

Published online: 22 Mar 2017.

Article views: 334

View related articles

View Crossmark data
The First Two Decades of Smart-City Research: A Bibliometric Analysis

Luca Moraa, Roberto Bolicib and Mark Deakinc

aDepartment of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy; bDepartment of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Milan, Italy; cSchool of Engineering and Built Environment, Edinburgh Napier University, Edinburgh, UK

ABSTRACT

This paper reports on the first two decades of research on smart cities by conducting a bibliometric analysis of the literature published between 1992 and 2012. The analysis shows that smart-city research is fragmented and lacks cohesion, and its growth follows two main development paths. The first one is based on the peer-reviewed publications produced by European universities, which support a holistic perspective on smart cities. The second path, instead, stands on the gray literature produced by the American business community and relates to a technocentric understanding of the subject. Divided along such paths, the future development of this new and promising field of research risks being undermined. For while the bibliometric analysis indicates that smart cities are emerging as a fast-growing topic of scientific enquiry, much of the knowledge that is generated about them is singularly technological in nature. In that sense, lacking the social intelligence, cultural artifacts, and environmental attributes, which are needed for the ICT-related urban innovation that such research champions.

KEYWORDS

Smart-city research; urban innovation; bibliometric analysis; development paths; corporate model; holistic interpretation

Introduction

Cities are complex and highly organized systems, “a collection of elements that act independently of one another but nevertheless manage to act in concert.” Their state of balance is extremely sensitive and subject to continuous changes dependent on “how we intervene in their organization through different forms of planning” (Batty and Marshall, 2009: 567). The need to manage this difficult scenario has required the connection of many academic disciplines (Benevolo, 2011; Secchi, 2011) brought together in the unique field of urban studies (Liu, 2005), which is “one of the longest established interdisciplinary fields within the modern academy” (Kamalski and Kirby, 2012: S3).

Computer science is one of these disciplines, and its continuous and progressive approach to urban studies started during the last years of the twentieth century, when...
the digital revolution began to transform urban areas “into a constellation of computers” (Batty, 1997: 155). During this period,

many commentators seemed to suggest that the new frontier [of information technology] was to provide solutions for overcoming most spatial and social problems [and] cities looked like the ideal arena where this revolution would test and show itself, changing economic development, services, and above all, community life. (Firmino, 2003: 3)

In this scenario, the information and communication technologies (ICTs) of urban areas are innovations supporting a new science of cities (Batty, 2014).

The exploration of the relationship between ICTs and urban areas began with Graham and Marvin’s Telecommunications and the City (Graham and Marvin, 1996). Along with the work produced by Mitchell (1995, 1999, 2003) and Castells (1996), their research activity allowed this new area of knowledge to take shape and develop in a concrete form. This process of knowledge production resulted in the publication of numerous scientific documents (see Graham and Marvin 1996, 1999, 2001, 2004; Graham 1997, 2000, 2001, 2002, 2004a). Many of these publications can be considered the most influential resources in the cognitive structure of “urban ICT studies” (Graham, 2004b: 3), a sub-discipline of urban studies in which research is carried out to study “the complex and poorly understood set of relationships between telecommunications and the development, planning and management of contemporary cities” (Graham and Marvin, 1996: XIII).

As an object of scientific enquiry, smart city studies fall in this research domain and first appeared in 1992 within the book entitled The Technopolis Phenomenon: Smart Cities, Fast Systems, Global Networks (Gibson et al., 1992). Over the years, smart cities have become the symbol of ICT-driven urban innovation and development and have attracted the increasing attention of researchers from universities, governments, and businesses. Thanks to their interest, smart-city research has grown sharply. Evidence of this trend can be found by analyzing Google Scholar’s data. Following a request to identify the literature produced between 1992 and 2015 in which the term “smart city” is included in the singular or plural form, the scholarly engine developed by Google has sourced 25,770 documents. Data shows that the annual production of publications on smart cities has increased by 600 times within 24 years, moving from 16 in 1992 to 9,494 in 2015.

The exploratory study reported on in this paper aims to provide an overall and detailed picture of what happened during the first two decades of research on smart cities, and lead to an improved understanding of the origins and progressive evolution of this fast-emerging research area and its intellectual structure. This aim is achieved by answering the following research questions:

- What are the characteristics of the literature produced during the period 1992 to 2012 in terms of type, influence, and impact?
- How large was the scientific community researching smart cities?
- What are the influence and productivity levels of researchers falling within this community and the organizations to which they belong?
- What is the interpretation of the smart-city concept that emerges from their research?
What factors have influenced the development of the intellectual structure resulting from the first two decades of smart-city research?

To answer these questions, we used bibliometric analysis techniques to analyze both the literature on smart cities published between 1992 and 2012, and the community of researchers involved in its production. The methodology used to perform the analysis is illustrated in the next section of the paper. This is followed by an in-depth description of the findings which shed light on the first 20 years of research in the field of smart cities. In another section, we discuss the findings in relation to the content of the smart-city literature produced subsequent to the period under investigation. The paper concludes with some recommendations aimed at guiding future research on smart cities in line with our findings.

Bibliometrics and the Analysis of Knowledge Domains

Bibliometrics investigates the formal properties of knowledge domains by using mathematical and statistical methods (Pritchard, 1969; Ding et al., 2001; Godin, 2006; De Bellis, 2009). Interest in applying these methods to explore the development of smart cities as a knowledge domain has grown considerably over the past five years and has resulted in the production of the following publications:

- Durán-Sánchez et al., 2017: a description of scientific research on smart cities by way of a bibliometric analysis and through a review of the literature indexed in Web of Science and Elsevier’s Scopus databases
- Ojo et al., 2016: an examination of the smart-city knowledge domain using Scopus’ journal articles and conference papers related to both smart cities and intelligent cities, which we consider equivalent terms
- Tregua et al., 2015: an analysis of the relationship between sustainable and smart cities using 367 journal articles and books indexed in Web of Science
- Ricciardi and Za, 2015: an examination of about 100 documents stored in the websites of two international conferences on smart cities “to define the boundaries of smart city research and to draw a map of [its] interdisciplinary community” (163).
- de Jong et al., 2015: an identification of the conceptual differences and relationships between twelve dominant city categories (sustainable city, eco city, low carbon city, liveable city, green city, smart city, digital city, ubiquitous city, intelligent city, information city, knowledge city, resilient city). This study is conducted by way of a bibliometric analysis and through the academic literature retrieved from Web of Science and Scopus.

What these studies have in common is a tendency to focus on specific aspects of smart cities, or compare them to other different city categories rather than capturing an overall picture of smart-city research. Moreover, they generally conduct bibliometric analyses that are sourced from a limited number of publications and databases in which gray literature is not indexed (Hutton, 2009). Therefore, some relevant source documents may have been missed.

The bibliometric study of this paper aims to overcome the limitations of existing bibliometric analyses into smart cities by:
focusing only on the overall intellectual structure of this knowledge domain
expanding the number of databases used to source documents
including both academic publications and gray literature.

This bibliometric study used 1,067 source documents identified with a keyword search and combining the analysis of the citations between them, together with citation and publication counts, which are the two most basic bibliometric measures (Tijssen and van Leeuwen, 2003; Martin and Daim, 2008). These documents represent all the smart-city literature published in the English language between 1992 and 2012. More specifically, that English language literature containing the term “smart city” or the term “smart cities,” in the title, abstract, keyword list, or body of the text, and stored in the following scholarly databases: Google Scholar; ISI Web of Science; IEEE Xplore; Scopus; SpringerLink; Engineering Village; ScienceDirect; and Taylor and Francis Online.

The use of multiple databases made it possible to conduct a comprehensive interdisciplinary search and broaden the field of investigation, avoiding the risk of not capturing the full extent of research on smart cities. However, it is important to note that this choice was particularly challenging and time consuming because the initial number of publications identified with the keyword search was 9,799. To extract the list of source documents, each publication was included in a single dataset and checked to correct typographical errors in the titles, authors’ names, or publication dates. Repeated documents that were found in more than one database were eliminated. Finally, the title, abstract, keyword list, and body of the text of each remaining publication was manually examined to verify the effective presence of the keyword. Documents in which this search was shown to be negative were eliminated.

After completing the search phase, the source documents were cataloged considering their type: abstracts, editorials, journal articles, books, book chapters, conference papers, and gray literature (See Figure 1). The last category includes the documents generally defined as gray and represents a substantial part of the scientific production, especially in recent years (Schopfel and Farace, 2010). According to the most common definition, gray literature represents the literature that is “produced on all levels of government, academics, business and industry in print and electronic formats, but […] not controlled by commercial publishers, i.e. where publishing is not the primary activity of the producing body” (Schopfel, 2010: 12).

All source documents were then linked to authors by their full names and the organizations they represent. Details about organizations were found by searching their official websites, the source documents, and the databases used for the keyword search. In this study, the most recent affiliation was attributed to each author. During this activity, data on both the type and location of each organization was also collected (See Figure 2). Based on types, four main categories were identified: (1) research and education: universities, academies, and colleges; (2) research and business: private companies operating in the ICT sector which are involved in research and consultancy activities or in the distribution of goods and services; (3) research and government: public authorities and their research institutes; (4) other. In case of organizations operating in multiple locations, the main headquarters were considered.

Finally, before starting the analysis, citation data were extracted manually from the list of references included in each source document. In addition, considering that citation data
often contain errors, which can lead to significant variations in the results of their analysis (Adam, 2002), all citations were tested for correctness and completeness, so as to guarantee the highest degree of data reliability. Altogether, a total of 22,137 citations were collected (957 to source documents and 21,180 to non-source documents), and they were used to build a frequency table showing each cited publication, together with the number of times it had been cited. This made it possible to determine that the total number of cited references was 17,574. Only citations to source documents were considered during the analysis.

The First Two Decades of Smart-City Research

A New and Fast Growing Research Area

The analysis shows that smart city-research established itself as a new area of scientific enquiry in 2009, and since then, it has been fast-growing, arousing strong interest from an expanding scientific community of researchers. This growth is particularly evident when observing the rise in the production of source documents (See Figure 3), which has continued to increase over time, together with the number of researchers involved

![Source documents by type and period of publication](image)
in their development (See Figure 4). Initially, this research area was very small, with only 19 source documents published during the first 10 years of research. Over the following eight years, from the beginning of 2002 to the end of 2009, production increased slightly. During this period 132 documents were published, about 17 per year. The period between 2010 and 2012, instead, was characterized by a tremendous growth in the number of publications. More than 900 new source documents were produced in three years, and they represent approximately 86 percent of the smart-city literature developed during the first two decades of research.

Figure 2. Organizations by type and location

Fragmentation of Knowledge

All branches of knowledge are composed of large groups of interconnected publications, and their structure can be represented through the use of complex mapping techniques, allowing the scientific community involved in their production to easily grasp “the big picture” (Moya-Anegon et al., 2004): “a spatial representation of the relationship among [...] individual papers as reflected in some formal, strictly quantifiable properties of scientific literature at a given time” (De Bellis, 2009: 142). Citations are the elements that
create the connections between publications. They represent “a type of symbolic currency that signals intellectual influences” and serve as an indicator by which the influence and impact of any scientific document can be assessed (Jacobsen et al., 2013: 226). By using citations, researchers can incorporate intellectual work from other research into their own studies (Garfield, 1970; Small 1973, 1978), and collaborate in the construction of the intellectual structure of their field of investigation.

The use of these techniques made it possible to visualize the overall intellectual structure that results from the first 20 years of research in the field of smart cities. The structure is illustrated in Figure 5, and is represented by a network of undirected and unweighted links in which the 1,067 source documents are nodes and the 957 citations referring to them are the connecting elements. This graph has been obtained using the Fruchterman-Reingold layout algorithm provided by the open-source software Gephi (Fruchterman and Reingold, 1991). Within the graph, the source documents are represented by a circle with a diameter proportional to the number of citations they have received. Therefore, the larger the circle, the greater number of citations. In addition, source documents with at least one citation are shown in blue, whereas those without citations are gray.

By observing the organization of the nodes, it becomes evident that fragmentation and divergence are the main features of this structure, and they result from the absence of connections between the source documents. This means that the impressive growth of available scientific literature observed in the last three years of the second decade goes hand in
hand with the lack of cohesion between the researchers involved in their production. As a result, the intellectual structure of the smart-city research area is divided into a multitude of unconnected publications. The central core of the network, indeed, is compact and well-

Figure 4. Cumulative growth in the number of authors involved in the production of source documents

Figure 5. Knowledge structure of the smart-city research field
articulated thanks to the presence of citations, which indicate an active exchange of knowledge among researchers. However, moving towards the outer perimeter, the organization of the network changes completely. Source documents are disconnected or combined in groups that are small in number and detached from the main core.

The Divergent Roots of Smart Cities

Divergence, lack of cohesion, and limited intellectual exchange among researchers become even more evident when trying to find out a commonly accepted interpretation of smart cities, which is missing. This absence is highlighted in various source documents, such as those produced by Alkandari et al. (2012), Chourabi et al. (2012), Hollands (2008), and Paskaleva (2011). Many definitions of the smart city are provided in scholarly literature and they overlap one another, making it difficult to obtain a common understanding and agreement as to what it means. To illustrate this trend, some of these definitions have been extracted from the source documents and reported in Table 1.

Table 1. Some definitions of smart cities extracted from the source documents

<table>
<thead>
<tr>
<th>SOURCE DOCUMENT</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall et al. (2000)</td>
<td>“[The smart city is] the urban center of the future, made safe, secure environmentally green, and efficient because all structures—whether for power, water, transportation, etc. are designed, constructed, and maintained making use of advanced, integrated materials, sensors, electronics, and networks which are interfaced with computerized systems comprised of databases, tracking, and decision-making algorithms”</td>
</tr>
<tr>
<td>Odendaal (2003)</td>
<td>“A smart city […] is one that capitalizes on the opportunities presented by Information and Communication Technology (ICT) in promoting its prosperity and influence”</td>
</tr>
<tr>
<td>Partridge (2004)</td>
<td>“A smart city is [a city that] actively embraces new technologies [seeking] to be a more open society where technology makes easier for people to have their say, gain access to services and to stay in touch with what is happening around them, simply and cheaply”</td>
</tr>
<tr>
<td>Giffinger et al. (2007)</td>
<td>“A Smart City is a city well performing in a forward-looking way in […] six characteristics […], built on the ‘smart’ combination of endowments and activities of self-decisive, independent and aware citizens”</td>
</tr>
<tr>
<td>Caragliu et al. (2009)</td>
<td>“The concept of the ‘smart city’ has recently been introduced as a strategic device to encompass modern urban production factors in a common framework and, in particular, to highlight the importance of Information and Communication Technologies (ICTs) in the last 20 years for enhancing the competitive profile of a city”</td>
</tr>
<tr>
<td>Paskaleva (2009)</td>
<td>“In the context of the present study, the smart city is defined as one that takes advantages of the opportunities offered by ICT in increasing local prosperity and competitiveness—an approach that implies integrated urban development involving multi-actor, multi-sector and multi-level perspectives”</td>
</tr>
<tr>
<td>Belissent et al. (2010)</td>
<td>“Forrester defines the smart city as […] a ‘city that uses information and communications technologies to make the critical infrastructure components and services of a city—administration, education, healthcare, public safety, real estate, transportation, and utilities—more aware, interactive, and efficient”</td>
</tr>
<tr>
<td>Hernández-Muñoz et al. (2011)</td>
<td>“Smart Cities can represent an extraordinary rich ecosystem to promote the generation of massive deployments of city-scale applications and services for a large number of activity sectors”</td>
</tr>
<tr>
<td>Alkandari et al. (2012)</td>
<td>“A smart city is one that uses a smart system characterized by the interaction between infrastructure, capital, behaviours and cultures, achieved through their integration”</td>
</tr>
<tr>
<td>Lazaroiu and Roscia (2012)</td>
<td>“A new city model, called ‘the smart city’, which represents a community of average technology size, interconnected and sustainable, comfortable, attractive and secure”</td>
</tr>
<tr>
<td>Schaffers et al. (2012)</td>
<td>“The smart city concept is multi-dimensional. It is a future scenario (what to achieve), even more it is an urban development strategy (how to achieve it). It focuses on how (Internet-related) technologies enhance the lives of citizens […] The smart city is about how people are empowered, through using technology, for contributing to urban change and realizing their ambitions. The smart city provides the conditions and resources for change. In this sense, the smart city is an urban laboratory, an urban innovation ecosystem, a living lab, an agent of change”</td>
</tr>
</tbody>
</table>
In this confused scenario, two dominant interpretative models emerge from the analysis of the relationship among the ten most cited source documents (See Figure 6) and their content. These publications can be split into two different groups, and their division depends on the interpretation of smart cities they support. The first group of publications is connected by a single network of citations, which provide evidence of an active exchange of knowledge among researchers, and promotes an interpretation that can be defined as holistic. In this case, smart cities are described as the result of the balanced combination of human, social, cultural, economic, environmental, and technological aspects, which stand alongside one another. The second group of publications, instead, is composed of source documents that are disconnected, and provide a techno-centric interpretation of smart cities.

The holistic perspective is supported in the research report published by Giffinger et al. (2007: 11), which is the most influential source document published between 1992 and 2012. This publication moves the smart city concept away from an excessively technological perspective, and offers a human-centric reading of the subject. Here smart cities are not simply places with a high availability of ICTs, but urban areas “well performing in a forward-looking way in [...] six characteristics [economy, people, governance, mobility, environment, and living], built on the ‘smart’ combination of endowments and activities of self-decisive, independent, and aware citizens.” The conference paper by Caragliu et al. (2009) makes a significant contribution to this vision, and the authors take this further with the journal article Caragliu et al. (2011: 70). According to their vision: “a city [is] smart when investments in human and social capital and traditional (transport) and modern (ICT) communication infrastructure fuel sustainable economic growth and a high quality of life, with a wise management of natural resources, through participatory governance.”

This holistic interpretation is also supported by Schaffers et al. (2011), but more importantly, responds to the request made by Hollands (2008: 315) for a more progressive view of the smart-city concept, which “must seriously start with people and the human capital...
side of the equation, rather than blindly believing that IT itself can automatically transform and improve cities.” This is a point already stressed in research by Komninos (2006, quoted in Hollands, 2008: 305), where the smart-city concept is merged with the intelligent-city concept. The latter as defined as: “territories with high capacity for learning and innovation, which is built-in to the creativity of their population, their institutions of knowledge creation, and their digital infrastructure for communication and knowledge management.” According to Komninos (2002, 2006: 13, 2008), therefore, a smart city is an urban area in which the technological, human, social, and cultural capital of a community offers the means to generate new knowledge of urban problems and an increased capability to face them.

In direct contrast to this interpretation, the smart city conceived by Dirks and Keeling (2009), both researchers at IBM (International Business Machines Corporation), is an urban environment permeated with ICTs, where all physical infrastructures are interconnected. In this case, the focus is almost exclusively on the singular role of new technologies in developing integrated platforms of city services. This is the same interpretation provided by a group of researchers from Forrester Research:

what makes a [city] smart is the combined use of software systems, server infrastructure, network infrastructure, and client devices—which Forrester calls Smart Computing technologies—to better connect seven critical city infrastructure components and services: city administration, education, healthcare, public safety, real estate, transportation, and utilities.
(Washburn et al., 2010: 2)

All this is made possible by the continuous and rapid diffusion of electronic devices capable of retrieving and transmitting data, such as smartphones and sensors, which have supported the growth of the Internet of Things (IoT). This is the web-based service development which is reported by Atzori et al. (2010).

The Geography of Knowledge Production

The scientific community working in the field of smart cities between 1992 and 2012 is made up of 2,584 researchers, divided among 779 organizations that are located in 434 cities and 69 countries. To assess their productivity and influence, a calculation was made to the quantity of source documents produced by each author and the number of citations they acquired. For publications produced by two or more authors, the unit value of the document and the number of citations it has acquired have been divided by the number of authors involved, so each can be assigned an equal share. In this way, individual researchers have become the basic elements for extending the analysis to the organizations in which they work, as well as the countries and continents where they are located. The process just described is shown in Figure 7.

The results show that smart-city research starts in Australia and North America. Subsequently, interest in the subject grows and the production of literature on smart cities developed in Europe, Asia, and Africa, between 1997 and 2000, and in South America, but not before 2010. Up to 2002, North America maintained the greatest number of authors and the highest number of publications, but this condition changed between 2002 and 2012, a period during which the number of European authors increased from 17 to 1,327 (See Table 2). These authors represent more than half of the global scientific community involved in smart city research (51.4 percent) between 1992 and 2012. The
The rest of this community is located in other continents, especially Asia, where 667 researchers have been identified (25.8 percent). If compared with American organizations (16.6 percent), Australia (3.9 percent), and Africa (1.7 percent), this value is certainly much higher.
Europe is also the largest contributor to the growth of smart-city research and the region that has influenced most the intellectual structure of this fast-expanding field of scientific enquiry. The majority of source documents are produced by organizations located in Europe (52 percent) and they have the greatest overall impact. The situation is also positive in North America, where researchers have published 16.6 percent of the source documents, accounting for 24.4 percent of the total citations. In the case of Asia, indeed, the relationship between production and influence is negative. Here the overall impact is much smaller (10.3 percent), despite a greater share of source documents (23.3 percent). This data is included in Figure 8.

Therefore, Europe and North America have become the main knowledge hubs in the field of smart cities. However, they are characterized by three important differences. A cross-cutting reading of the data reported in Tables 3–5 makes it possible to analyze the first one. These data show that European research on smart cities is conducted mainly in universities, which have the greatest impact and highest productivity. It also shows that most of the European authors are from academic institutions and these account for not only 68 percent of the European source documents, but also about 72 percent of the citations. Conversely, in North America, the highest productivity is linked to both universities and businesses operating in the ICT sector. However, between these two knowledge producers, the latter has certainly a dominant role, especially IBM and Forrester Research. Altogether, these two companies accounted for about 50 percent of the total citations acquired by US organizations during the period 1992 to 2012, and nearly 70 percent of the source documents they produced. Moreover, with 100 researchers working in the field of smart cities, at the end of 2012, IBM was the world’s leading organization in terms of authors, productivity, and influence over the development of this research area.

The remaining two differences regard: (1) the divergent interpretation of the smart city provided by each knowledge hub and (2) the approach used by its researchers to produce...
<table>
<thead>
<tr>
<th>CONTINENTS AND COUNTRIES</th>
<th>% AUTHORS ON TOTAL</th>
<th>% SOURCE DOCS ON TOTAL</th>
<th>% CITATIONS ON TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>Africa</td>
<td>0.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.0</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Asia</td>
<td>5.8</td>
<td>17.8</td>
<td>1.5</td>
</tr>
<tr>
<td>China</td>
<td>0.9</td>
<td>8.9</td>
<td>0.6</td>
</tr>
<tr>
<td>India</td>
<td>0.7</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Japan</td>
<td>4.1</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Korea</td>
<td>0.1</td>
<td>3.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Taiwan</td>
<td>0.0</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Other</td>
<td>0.1</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Australia</td>
<td>0.5</td>
<td>3.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Australia</td>
<td>0.5</td>
<td>3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Europe</td>
<td>9.4</td>
<td>33.6</td>
<td>3.5</td>
</tr>
<tr>
<td>Austria</td>
<td>0.9</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.2</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>France</td>
<td>1.1</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Germany</td>
<td>2.1</td>
<td>3.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Greece</td>
<td>0.3</td>
<td>2.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Italy</td>
<td>0.9</td>
<td>6.3</td>
<td>0.5</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>0.1</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Spain</td>
<td>1.0</td>
<td>3.6</td>
<td>0.3</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.1</td>
<td>5.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Other</td>
<td>1.7</td>
<td>7.5</td>
<td>0.5</td>
</tr>
<tr>
<td>North America</td>
<td>6.7</td>
<td>8.0</td>
<td>0.9</td>
</tr>
<tr>
<td>United States</td>
<td>6.7</td>
<td>6.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>South America</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes: B: Research and Business; E: Research and Education; G: Research and Government; O: Other
and circulate the literature on smart cities which describe these interpretations. Both differences can be observed by comparing the most cited source documents produced respectively in Europe (See Table 6) and North America (See Table 7). The European
knowledge hub supports the holistic interpretative model of smart cities. This model stems mainly from gray literature (Giffinger et al., 2007; Caragliu et al., 2009), but over the years, it has been progressively consolidated within the peer-reviewed literature of the academic world (Komninos, 2002, 2008; Hollands, 2008; Paskaleva, 2009; Schaffers et al., 2011). On the other hand, North American businesses support the techno-centric interpretation, whose foundations are built primarily by publications passing through the more informal channels of gray literature (Hall et al., 2000; Dirks et al., 2009, 2010; Dirks and Keeling, 2009; Moss Kanter and Litow, 2009; Belissent et al., 2010; Washburn et al., 2010).

Finally, African and Asian organizations do not seem to have significantly influenced the development of smart-city research. This situation reflects the production volume of the few researchers working in the African continent. However, this is not the case in Asia, because some of the most productive organizations are based in India and Japan. For example, Hitachi and the Tata Group have produced almost 4 percent of the total source documents, thanks to the work of 92 researchers. These are very high numbers, matched only by IBM. However, the American company has been able to gain a completely different influence, with 9 percent of the total citations as against the 0.8 percent attributed to the two Asian companies.

Table 7. The 10 most cited source documents produced by North American organizations

<table>
<thead>
<tr>
<th>SOURCE DOCUMENT</th>
<th>ORGANIZATIONS</th>
<th>TYPE</th>
<th>CITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirks and Keeling, 2009</td>
<td>IBM (B)</td>
<td>Gr</td>
<td>22</td>
</tr>
<tr>
<td>Shapiro, 2005</td>
<td>University of Chicago (E)</td>
<td>Gr</td>
<td>17</td>
</tr>
<tr>
<td>Washburn et al., 2010</td>
<td>Forrester Research (B)</td>
<td>Gr</td>
<td>17</td>
</tr>
<tr>
<td>Naphade et al., 2011</td>
<td>IBM (B)</td>
<td>Ar</td>
<td>13</td>
</tr>
<tr>
<td>Coe et al., 2001</td>
<td>University of Ottawa (E)</td>
<td>Ar</td>
<td>12</td>
</tr>
<tr>
<td>Moss Kanter and Litow, 2009</td>
<td>Harvard University (E); IBM (B)</td>
<td>Gr</td>
<td>12</td>
</tr>
<tr>
<td>Dirks et al., 2009</td>
<td>IBM (B)</td>
<td>Gr</td>
<td>11</td>
</tr>
<tr>
<td>Dirks et al., 2010</td>
<td>IBM (B)</td>
<td>Gr</td>
<td>11</td>
</tr>
<tr>
<td>Belissent et al., 2010</td>
<td>Forrester Research (B)</td>
<td>Gr</td>
<td>10</td>
</tr>
<tr>
<td>Hall et al., 2000</td>
<td>Brookhaven National Laboratory (G)</td>
<td>Gr</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes: Ab: Abstract; Ed: Editorial; Ar: Journal article; Bo: Book; Ch: Book chapter; Co: Conference paper; Gr: Gray literature; B: Research and Business; E: Research and Education; G: Research and Government; O: Other

A New, Promising, but Divided Research Area

This bibliometric analysis provides an overall picture of the first two decades of research on smart cities. The results show the amount of literature shaping this new research area and its intellectual structure has grown continuously during the period under investigation, especially since 2009. However, the limited intellectual exchange and lack of cohesion characterizing this structure have resulted in a situation whereby smart-city researchers illustrate a tendency to follow personal trajectories in isolation from one another. As a result, the publications that they produce remain separated from one another as objects of knowledge, divided along lines of enquiry that do not converge. In this scenario, the growth of smart-city research follows two main development paths. The first one is based on peer-reviewed publications produced by European universities and those developing a holistic interpretation of smart cities. The second path, on the other hand, stands on the gray literature produced by the North American business
world and its consultancy firms, which are promoting a techno-centric understanding of this subject.

This big picture on smart-city research only relates to developments taking place between 1992 and 2012, but it nevertheless does serve to highlight the source of that division which still preoccupies many of the ongoing enquiries. For if we review the literature produced after 2012, indeed, the situation does not seem to change. This is because, while leading academics in the field continue to characterize smart cities as a new and promising topic of research, “there is still not a clear and consistent understanding of [this] concept” (Chourabi et al., 2012: 2289) and the work of defining and conceptualizing it is still in progress (Albino et al., 2015; Cocchia and Damieri, 2016; Fernandez-Anez, 2016; Ojo et al., 2016). Consequently, rather than overcoming the fragmentation that has been generated over the first 20 years, smart-city research remains divided along the same lines of enquiry, and researchers are still left searching for definitions that are capable of bridging them. Some examples are Kitchin (2014), Townsend (2013), Greco and Cresta (2015), Urzaiz et al. (2014) and Christopoulou et al. (2014).

The bibliometric analysis of the smart-city research reported on in this paper shows the locus of the academic exchange currently taking place on the defining features of smart cities, as a point of intersection between two competing development paths, which are structurally divided in terms of both the form and content that each advances to define the smart city as an object of scientific enquiry.

On one hand, there is the development path promoting the techno-centric vision of smart cities. This vision proposes the smart city as an engine that fuels ICT companies and that is expected to generate hundreds of billions of dollars by 2020 (Zanella et al., 2014). Driven by the desire to exploit this new and promising market, because it can “provide [them] with alternative growth initiatives, particularly in a recession environment” (Paroutis et al., 2014: 270), large companies such as Cisco Systems (Amato et al., 2012), ABB (2013) and Fujitsu (Tamai, 2014) have decided to follow IBM and deploy ICTs as vehicles of urban innovation that drive smart-city development.

This corporate smart-city model is criticized because it fails to account for the social and cultural challenges that smart-city developments pose in anything but technological terms. For in the corporate model, smart cities are assumed to arise from: (1) the concentration and interconnection of technological solutions able to capture and manage large amounts of data and (2) computing models and algorithms that use such data to cure the inefficiencies that cities exhibit (Townsend, 2013; Soderstrom et al., 2014; Hollands, 2015, 2016; McNeill, 2016). The ineffectiveness of this model is empirically demonstrated by Shin (2007, 2009, 2010), who highlights the weaknesses of the corporate and techno-centric smart cities developed by South Korea. Some examples of these smart cities are reported on by Yigitcanlar (2016), Townsend (2013), Anttiroiko (2013), Yigitcanlar and Lee (2014), and Shwayri (2013). They include the limitations of smart-city development in Busan, Seoul, and Songdo International Business District, which is located along the waterfront of Incheon.

On the other hand, over the last four years, a holistic interpretation of smart cities has emerged within the academic world and acquired support from the scientific community. This interpretation is based on a progressive and human-centric perspective of ICT-driven urban innovation and development, and the balanced combination of human, social, cultural, environmental, economic, and technological aspects (Hemment and Townsend,
However, as reported by Lee et al. (2014: 80), the research supporting this vision of smart cities still “remains at a preliminary stage,” because the knowledge gap between theory and practice has not yet been filled. Questions remain: “What elements go into making up a smart city?” (Hollands, 2015: 62) and How can strategies capable of building smart cities be designed and implemented in such a way as to continue to be relevant subject matters of investigation (Lazaroiu and Roscia, 2012; Zygiaris, 2013; Komninos, 2014; Bolici and Mora, 2015)? But unfortunately, there is currently little agreement across the scientific community on how to conduct research capable of generating the evidence needed to bridge this gap (Deakin, 2014).

As Lee et al. (2014) state:

Discussions in academic literature of relevant [theories] or frameworks are few [and the] analysis lags behind the actual practice of how different cities […] are moving toward transforming themselves into smart […] cities […] Even though actual practice often remains fragmented, real world implementation still generally outstrips any discussion in academic literature capable of generalization.

As a result, the knowledge necessary to understand the process of building effective smart cities in the real world has not yet been produced, nor have the tools for supporting the actors involved in this activity.

Conclusion

The results of this analysis indicate that the main reason for the confusion around the scientific status of smart-city research rests with the:

- lack of intellectual exchange among those conducting research in the field of smart cities
- tendency smart-city researchers have to be subjective and follow personal trajectories in isolation from other researchers
- divisions that smart-city research opens up in the scientific community
- struggles that communities have in finding any common currency between their lives and the knowledge smart-city research produces
- disagreement the research generates as to the ways of conceptualizing and defining the smart city, which emerges as one of the main terms of reference for ICT-related urban innovation

This situation leaves smart-city research fragmented and divided along two main development paths and in a position whereby the future development of this new, promising, but divided area of research is put at risk. For while the bibliometric analysis indicates that smart cities are emerging as a fast-growing topic of scientific enquiry, much of the knowledge which is generated about them is singularly technological in nature. Therefore, it lacks the social intelligence, cultural artifacts, and environmental attributes that are needed for ICT-related urban innovation that such research champions to be “smart” in securing the physical infrastructure requirements of cities.

To address the challenge which is posed by this situation, the intellectual exchange among the members of the scientific community researching smart cities needs to increase
markedly. Rather than running the risk of becoming entrenched along the lines of division reported in this paper, researchers should instead begin to search out the grounds to transcend them by “acting in concert.” What is more, smart-city researchers need to achieve this aim by integrating their respective fields of specialization using a model or mode of scientific inquiry that not only manages to bridge the structural divisions that have been highlighted, but does it in a format the content of which adds up to more than the “sum-of-its-parts.” This will support the construction of the collaborative environment that is necessary to generate a possible agreement concerning the way of thinking about, conceptualizing, and defining the smart city.

Notes

1. The keyword search was performed on April 2016 using the search query: “smart city” OR “smart cities” (Baseline 1992).
2. This growth is documented and discussed in other recent studies produced by Wolfram (2012) and D’Auria et al. (2014).
3. As suggested by De Bellis (2009) and Small and Griffith (1974), any field of research can be envisioned as a mosaic or puzzle of individual units (scientific documents) clustered together by way of subject-related repositories (journals) and produced through the research activities performed by a community of scholars (authors). These publications represent the output of research conducted into a specific field of study and raw data for performing bibliometric analyses. Therefore, they are defined as source documents: Small and Crane, 1979; Shiau and Dwivedi, 2013.
4. No searches have been done to retrieve all available literature on smart cities. Our keyword search was limited to English language documents.
5. “Many new categories of cities have entered the policy discourse: sustainable cities; green cities; digital cities; smart cities; intelligent cities; information cities; knowledge cities; resilient cities; eco cities; low carbon cities; liveable cities; and even combinations, such as low carbon eco cities and ubiquitous eco cities” (de Jong et al., 2015: 25). However, within the literature on urban development and innovation, these categories of cities are used interchangeably, even if they are characterized by conceptual and practical differences (de Jong et al., 2015). This generates the terminological confusion described by Hollands (2008) and Deakin and Al Wear (2011). Taking such differences into account and mindful of this study’s specific interest in smart cities, a decision was made to set the keyword search so that only documents containing the term “smart city” in singular or plural form were captured. These are considered to be the core documents for exploring what smart cities mean as knowledge objects. No varying or related terms are therefore considered in this search. This avoids the risk of adversely affecting the bibliometric study by including documents not directly connected to smart cities as a knowledge domain.
6. Considering the definition provided by Schopfel (2010), only conference papers included in repositories controlled by commercial publishers such as Springer, ACM (Association for Computing Machinery), IEEE (Institute of Electrical and Electronics Engineers), and Elsevier are not considered as gray literature.
7. Most of the gray literature is extracted from Google Scholar, which is a database particularly recommended for identifying this kind of publication (Hutton 2009).

Disclosure Statement

No potential conflict of interest was reported by the authors.
Notes on contributors

Luca Mora, Politecnico di Milano, Department of Architecture, Built Environment and Construction Engineering, Via G. Ponzio 31, 20133 Milano, Italy, Luca.Mora@polimi.it

Roberto Bolici, Politecnico di Milano, Department of Architecture, Built Environment and Construction Engineering, Via G. Ponzio 31, 20133 Milano, Italy, Roberto.Bolici@polimi.it

Mark Deakin, Edinburgh Napier University, School of Engineering and Built Environment, 10 Colinton Road, EH10 5DT Edinburgh, United Kingdom, M.Deakin@napier.ac.uk

Bibliography

A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe,” paper presented at 3rd Central European Conference in Regional Science (Kosice, 7-9 October 2009).

E. Christopoulou, D. Ringas, and J. Garofalakis, “The Vision of the Sociable Smart City,” in N. Streitz and P. Markopoulos, eds., Distributed, Ambient, and Pervasive Interactions: Second

N. De Bellis, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics (Lanham, MD: The Scarecrow Press, 2009).

R. Giffinger, C. Ferter, H. Kramar, R. Kalasek, N. Pichler-Milanović, and E. Meijers, Smart Cities: Ranking of European Medium-sized Cities (Vienna: Vienna University of Technology - Centre of

H.G. Small and D. Crane, “Specialties and Disciplines in Science and Social Science: An Examination of Their Structure Using Citation Indexes,” *Scientometrics* 1: 5-6 (1979) 445–461.

